For routine clinical use it is customary to use lookup tables of
relative-dose factors that are derived from measurements in a phantom
of tissue-equivalent material such as water, for spot calculations of
dose to a point on the collimator axis. These tables contain
"normalized" data, which means that the values are given relative to
one of the data points which is given the value of one. That is, all
the measured values are divided by the value at the "reference point";
when the relative values are used they are multiplied by appropriate
"calibration factors" which are probably measured with a different
instrument that is specialized for absolute measurements. However the
measurements are of total absorbed dose for different phantom and
detector locations and the terms "scatter factor" and "output factor"
are misleading because they come from conventions of normalization and
not from separating primary and scattered radiation contributions to
the total dose.

## Percent Depth DoseWith today's absorbed dose calibration of therapy fields the same Percent Depth Dose format is used, but two factors are listed for each field size. The Output Factor is measured "in air", that is with an ion chamber surrounded by a minimum of absorbing material to provide buildup and to exclude electron contamination. The dependence on collimator setting of this measurement is not properly part of the scatter factor because the entire "mini-phantom" surrounding the detector is included in the smallest field size. It is due to forward-scattered photons from primary collimator and source or target assembly which constitute an extended source that is partly occluded by the field collimator depending on its setting, and in a linac which is controlled by a transmission ion chamber the output is affected also by back-scattered electrons which depend mainly on the upper jaw setting. The Output Factors are listed relative to that for the standard geometry chosen for machine calibration, for example at depth of maximum dose in a field that is 10x10 cm at 100 cm SSD. The Scatter Factor is measured for a series of field sizes at the depth of maximum dose in a phantom set at the given SSD and presented as a ratio to that in the standard calibration field, after factoring out the dependence of machine output on collimator setting. Thus the product of Output Factor and Scatter Factor is in fact the "normalizing factor" that was taken out of the tabulated depth-dose data for each field size to get values relative to one at the depth of maximum dose. They must be listed separately, however, because the effective field size for table lookup might differ from the collimator setting because of blocked fields or extended distance. The physical effects which determine the relative dose values in the Percent Depth Dose table include the inverse-square factor of dependence on area of a diverging beam of radiation from a point source. Because of this geometrical effect a Percent Depth Dose table applies to only one SSD. A ratio of inverse square factors called the "Mayneord Factor" is sometimes used for an approximate correction to apply PDD data to a different SSD. In addition the contribution to total absorbed dose due to
scatter from surrounding irradiated material depends on depth and on
the projected field size which shows a geometric divergence from that
at the reference distance for which the collimator scales are
calibrated. The Scatter Factor which was taken out only represents the
difference in scatter contribution at d(max), in each field size, from
that in the calibration field. |

## Tissue - Air Ratio## Tissue - Output RatioWhen originally proposed the TAR values were intended to be
ratios of "exposure" in the patient to "exposure" measured in air with
a suitable buildup cap or "mini-phantom" on the ion chamber. With the
advent of absorbed dose calibration (See The dependence of machine output on collimator setting, relative to the calibrated field size, is measured with a "mini-phantom" smaller than any field size of interest, factored out of the depth-dose data, and tabulated as a separate Output Factor since the collimator setting may not correspond to irradiated field size. Contemporary recommendations for therapy machine output
calibrations specify measurement of absorbed dose in a tissue- or
water- equivalent phantom at a depth well beyond the buildup layer, at
least 5 cm, with a representative field size, typically 10x10 cm.
Although these recommendations are the result of ion chamber
calibration considerations, they are also a representative field size
and depth for clinical use; for isocentric treatment plans such a
calibration at isocenter is directly applicable to the prescription
point. |

## Tissue - Phantom Ratio## Tissue - Maximum RatioAs with the Percent Depth Dose table, these Scatter Factors only tell the difference in total dose from that in a standard 10x10 field, at calibration depth, due to the dependence of scatter on field size. The bulk of the scatter contribution, with its dependence on depth and field size, is still included in the tabulated values. Nevertheless Tissue-Phantom and Tissue-Maximum Ratio tables are the most common, probably from the use of depth-dose scanning systems that do not offer absolute calibration but give data that is "normalized" or scaled relative to some value in the data set, either digitally or by analog adjustment of the equipment. Then the separate measurement of Output Factor and Scatter Factor, relative to the calibration field geometry, is regarded as more accurate. With such data a Tissue-Output Ratio table would be derived by multiplying relative depth-dose values by the Scatter Factor for each field size. These data tables are accurate only for spot dosimetry on the beam axis with perpendicular incidence in a homogeneous medium. They are applicable at distances other than that of the isocenter by doing the lookup for the projected field size at the distance of interest and by including an inverse square factor which is simple to calculate. These tables are also used for spot dosimetry along the axis of rectangular fields, with a lookup table of equivalent square fields or an approximate formula using area/perimeter. Another common practice is to combine Output Factor and
Scatter Factor into a single Relative Dose Factor that is measured in a
phantom for a series of field sizes. This would be sufficient if the
clinical field size always corresponded to the collimator setting, but
with blocks or extended distances the lookups of Output Factor and
Scatter Factor are for different equivalent field sizes. The errors
from this practice, up to a few percent, are small compared with
commonly-accepted errors from ignoring inhomogeneities in the
patient. |

## Scatter - Air Ratio## Scatter - Output RatioClarkson (1941) and Gupta and Cunningham (1966,1970) showed that the primary component of total absorbed dose could be represented by the idealization of zero-area Tissue-Air Ratio. Subtracting these values from TAR or TOR values measured for non-zero field sizes yields a table called Scatter-Air Ratio or Scatter-Output Ratio. These zero-area TAR values cannot be measured because ion chambers do not have zero area and because penumbra effects that intrude in small fields are spurious to the concept. Instead they are modeled with plausible assumptions. One model is a mathematical function of exponentials that are measured with narrow-beam geometry; another is produced by extrapolating TAR or TOR values, measured for small field sizes, to zero field size for each depth. In their use they are added back to adjusted SAR values to calculate an effective TAR or TOR for a specific field geometry, so the result is not sensitive to what model was used, provided the same one is used to derive SAR. IRREG was the name of the historic program developed by Cunningham's group in Toronto and widely circulated, to do spot dosimetry with irregular field boundaries by Clarkson integration using a Scatter-Air Ratio lookup table based on central-axis depth dose data. Off-axis point doses can also be calculated to good approximation by entering the appropriate SSD and depth, with allowance for off-axis output profile and oblique penetration in determining the primary dose contribution. Most treatment planning computer systems include the IRREG
program or equivalant, and SAR data tables, for spot dosimetry at
points of interest with measured SSD and depth; they assume unit
density, homogeneous patient anatomy with not-too-steep surface
contours. This function is usually separate from calculations that show
a dose distribution in a cross section of the patient. Po sted 8 August 1998 by [Glen
Sandberg] |